

About This Book

This book contains simple games programs to play on a microcomputer. They are written for use on ZX81, ZX Spectrum, BBC, VIC 20 ,
TRS-80 and Pet and Apple micros, and many are short enough to fit into the ZX81's 1 K of memory.

Most micros use the language BASIC, but they all have their own variations or dialects. In this book, the main listing for each program works on the ZX81 and lines which need changing for the other computers are marked with symbols and printed underneath. The fact that the programs are written for several micros means that they do not make full use of each one's facilities. You could try finding ways of making the programs shorter and neater for your micro.

For each game, there are ideas for changing and adding to the programs and towards the back of the book you will find tips and hints on writing games of your own. Also in the book isa conversion chart to help you adapt programs in magazines and other books for your micro and a summary of the BASIC terms used in this book.

Typing in the programs

Lines which need changing for computers other than ZX81 are marked with these symbols:
\triangle VIC and Pet
\star BBC and Acorn Electron

- TRS-80
- Apple
s ZX Spectrum
Every time you see the symbol for the micro you are using, look below for the corresponding line number with the same symbol and type that in instead.
VIC 20 versions of all except the graphics program should work on Pet computers.

Check you have typed everything correctly. It is easy to make mistakes, so expect to find some. Use your manual to find out how to make changes to the program once it is typed in. If in doubt, you can always type the line again. All the computers will replace an existing line with a new one with the same number.
Here is a checklist of common mistakes to look out for:
1 Line missed out
2 Line wrongly numbered
3 The beginning of one line joined onto the end of another.

4 Brackets, commas, colons, semicolons, fullstops or spaces missed out, especially in long, complicated lines. Watch for double brackets in particular.
5 Wrong line used for your computer.
6 Letter "O" confused with zero.
7 Wrong numbers used, e.g. extra zeros included.

Playing the games

To start the game you must type RUN. In some games things happen very quickly, so make sure you have read the instructions and know what you are supposed to do.

It is quite likely that the program still

has a mistake in it and either won't run at all or the game won't work properly. Sometimes your computer will give you an error code which you can look up in the manual. This may help you find the mistake, though not always. List the program again and check it carefully against the book.

When the game is over, the computer will usually say something like BREAK IN LINE 200. To play again, you have to type RUN.

Experimenting with the games

There are suggestions for changing and adding to the programs throughout the book, but don't be afraid to experiment with changes of your own. You can't damage the computer and you can always change back to the original if the changes don't work.

You will probably find you want to adjust the speed of some games, * especially after you have played them a number of times. You will find out which line to change on each program page.

Wherever you see PRINT, you can change the message in quotes that follows it to whatever you like.
Also, unless you have ZX81 with only 1 K , you can add extra messages.

Type a line number (say 105 if you want to add a message between lines 100 and 110), then type PRINT, then your message inside quotes.

If your computer can make colours and sounds, you could use your manual to find out how they work and try adding them to the games in this book.

*See page 37 for a special note for BBC and Spectrum users.

Robot Missile

The year is 2582 and the people of Earth are in the midst of battle against the Robots. A lethal Robot Missile has just landed and everyone is depending on you to find the secret code which unlocks its defuse mechanism. If you fail, the entire Earth Command Headquarters will be blown up.

Your computer knows what the code letter is. You must type in your guess and it will tell you whether the code letter is earlier or later in the alphabet. You have four chances to find the correct letter before the missile blows up.

How the program works

These lines print the title and instructions.

This selects a number between 0 and 26, converts it to a letter (the "secret code") and puts it in Cs .

10 PRINT
20 PRINT 70 PRINT

30 PRINT "TYPE THE CORRECT CODE"
40 PRINT "LETTER ($A-Z$) TQ"
50 PRINT "DEFUSE THE MISSILE." 60 PRINT "YOU HAVE 4 CHANCES"
"ROBOT MISSILE" =.
st

Line 90 begins a loop which makes lines 100-140 repeat 4 100 INPUT G\$ Puts your guess in GS.
110 IF G $\$=$ C $\$$ THEN GOTO 210 Checks if your letter is the same as the "secret code" in C8. If so computer jumps to 210.
120 IF G $\$<C \$$ THEN PRINT "LATER";
130 IF G\$>C THEN PRINT "EARLIER";
140 PRINT " THAN ";G\$
Checks if secret code letter is earlier or later in the alphabet than yours and prints an appropriate message.
End of loop. Goes back for next turn.

This prints if all your guesses were wrong.

210 PRINT "TICK...FZZZZ...CLICK..." 220 PRINT "YOU DID IT" 230 STAP

This prints if you guessed right.
The above listing will work on a ZX81. For other computers, make the changes below. $\star \triangle \bullet 80$ LET C $\$=$ CHR $\$(64+$ INT (RND (1) $* 26+1)$)
-80 LET C $=$ CHR $\$(64+$ INT (RND (0$) * 26+1)$)
s80 LET C $\$=\operatorname{CHR} \$(64+$ INT (RND *26+1))

Adding to the program

You can make the computer print an extra message for a correct guess on the last go. Change line 220 by adding a semicolon to it, like this: 220 PRINT "YOU DID IT"; and add a new line 230: 230 IF G=5 THEN PRINT "(JUST)"

Puzzle corner

See if you can work out how to change the program to give you more or less chances of guessing the code letter.

20 PRINT "VITAL MESSAGE"
30 PRINT " Asks you for a "difficulty number" and
40 PRINT "HOW DIFFICULT? (4-10)" putsitinD.
50 INPUT D
60 IF $D<4$ OR $D>10$ THEN GOTO $40 —$ Checks your number isn't less than 4 ormore than 10.
70 LET $M \$=$ "" Sets up an empty ("null" in computer language) string labelled MS in which the computer can store the secret message.

80 FOR $\mathrm{I}=1$ TQ D
sk- $\triangle 99$ LET M\$=M丰+CHR事 (INT (RND*26+38))
Computer loops round D times. Each loop it chooses a letter and adds it to the string of letters it has already chosen and put in MS.
40110 CLS
120 PRINT "SEND THIS MESSAGE: " 130 PRINT 140 PRINT M\$
t 160 NEXT I Clears screen and then prints the message.
Message stays on screen while computer loops round, doing nothing, for a number of times depending on D.
$\Delta 170 \mathrm{CLS}$ Clears screen whenloop has finished.
180 INPUT N $\$$ Puts your version of the message in N5.
190 IF $\mathrm{N} \$=\mathrm{M}=$ THEN GOTO 240 Checks if your message is the same as the message in MS and jumps to 240 ifitis.
200 PRINT "YOU GOT IT WRONG"
210 PRINT "YOU SHOULD HAVE SENT: " Prints if you are wrong, telling you
220 PRINT M\$
what the message should have been. 230 GOTD 260
240 PRINT "MESSAGE CORRECT" 250 PRINT "THE WAR IS DVER" 260 STOP

The above listing will work on a ZX81. For other computers, make the changes below.
-10, 110, 170 HOME
$\triangle 10,110,170$ PRINT CHR\$ (147)
$\star \triangle 190$ LET M $\$=M=$ CHR + (INT (RND (1) * $26+65$))

s 90 LET $M \$=M \$+$ CHR $\$$ (INT (RND $* 26+65$))

- 150 FOR $\mathrm{I}=1$ TO D* 180
$\star 150$ FOR I=1 TO D*400

How to make the game harder

You can change the program to include numbers and punctuation marks in the secret message. Do this by changing line 90 as follows:

2x90 LET M\$ = M\$ + CHRS(INT(RND*43+21))
$\star \Delta \ominus 90$ LET M\$ $=$ M\$ + CHR\$(INT(RND(1)*43+48))

- 90 LETM\$ $=\mathrm{M} \$+$ CHR\$(INT(RND(0) $43+48$))
s 90 LET MS $=\mathrm{M} \$+$ CHR\$(INT $(\mathrm{RND} * 43+48)$)

Puzzle corner

Can you work out how to make the message stay on the screen longer?

Shootout

You are standing back to back．You take 10 paces，turn and reach for your gun．How quick are you？Can you shoot first？

Your computer prints the numbers 1 to 10 to represent the 10 paces，pauses and then prints HE DRAWS ．．． You must be ready to press a key（any one will do）the instant these words come on the screen．If you arequick enough，you will win，Dion＇t press a key before HE
DRAWS comes up or you will automaticallylose．

How to change the speed of the game

You can adjust the time you have to react to the message and press a key by changing the last number in line 130．A smaller number will give you less time．（For the BBC， change the number in brackets in line 140．）

4． 10 CLS
20 PRINT＂COWBOY SHOOTOUT－＂
30 PRINT＂YOU ARE BACK TO BACK＂
40 PRINT＂TAKE 10 PACES．．．＂
50 FOR I＝1 TO 10
＊ 60 PRINT I；＂．．＂；
70 NEXT I
80 PRINT
＊ 100 NEXT I
＊$\triangle 110$ IF INKEY串く＞＂＂THEN GOTO 160

120 PRINT＂HE DRAWS．．．．．＂；

160 PRINT＂AND SHOOTS．＂ 170 PRINT＂YOU ARE DEAD．＂ 180 GOTO 210
190 PRINT＂BUT YOU SHOOT FIRST．＂ 200 PRINT＂YOU KILLED HIM．＂ 210 STOP
The above listing will work on a ZX81．For other computers，make the changes below．
－10 HOME
$\triangle 10$ PRINT CHR ${ }^{(147)}$
＊60 PRINT ；I；＂．．＂；
＊■A＠65 FOR J＝1 TO 300 ：NEXT J
$\star \triangle \ominus 90$ FOR $\mathrm{I}=1$ TO RND（1）$* 1000$
■90 FOR I＝1 TO RND（0）＊ 1000
$\bullet 110$ IF PEEK $(-16384)>127$ THEN GOTO 160
$\triangle 110$ GET I $\$$ IF I $\$<>"$＂THEN GOTO 160
＊110 IF INKEY\＄（1）＜＞＂＂THEN GOTO 160
－130 FOR I＝1 TO 20
■ $\triangle 130$ FRR $\mathrm{I}=1$ TO 50
\star DELETE 130， 150
－ 140 IF PEEK $(-16.384)>127$ THEN GOTO 190
$\triangle 140$ GET I\＄：IF I $\$\langle>"$＂THEN GOTO 190
太140 IF INKEY $(40)<>" n$ THEN GOTO 190

Making the game harder

If you change the program as follows，you will add the possibility of you missing sometimes：
1）In line 140 ，change 190 to 220.
2）Add these lines：
s ZX 220 IF RND $>.3$ THEN GOTO 190
$\star \Delta 220$ IF RND（1）＞． 3 THEN GOTO 190 220IF RND（0）＞．3 THEN GOTO 190 230 PRINT＂BUT YOU MISSED＂ 240 GOTO 90

How the program works

This is a loop which sends the computer round 10 times to print a number and two dots each time.
Another loop-this time to make the computer delay. The computer loops round a number of times depending on the value of RND, doing nothing.
Checks you're not cheating by pressing a key before HE DRAWS comes on the screen.

Prints the signal for you to press a key.
Checks the keyboard to see if you are pressing a key, and jumps to 190 if you are. (Notice that line 140 is in the middle of a FOR . . . NEXT loop. This makes the computer check the keyboard a number of times to give you a reasonable chance of pressing a key.)
Prints if you lose. (Either you ran out of time or were cheating.)
Prints if you win.
Delay loops can be written in one line, as in line 65, for all but the ZX81.

An extra delay loop for the faster computers.

Puzzle corner

See if you can work out how to make it possible for the computer to miss too.

Desert Tank Battle

The last major stronghold of Robot forces outside the U.R.S* is hidden in ancient castle ruins in the middle of the desert. A fleet of desert hovertanks has beensent to destroy it and you are the commander. Your tank controls the five remaining missiles.
You must assess carefully the direction and elevation before you launch each one. Your computer will ask you for a direction angle between -90° (extremeleft) and $+90^{\circ}$ (extreme right) and an elevation angle between 0° (along the ground) and 90° (straight up in the air). The elevation determines the distance the missile will travel.
Is your aim good enough to destroy the robot stronghold?

10 PRINT "DESERT TANK BATTLE"
■ 20 LET $T=I N T$ (RND 181) -90

* 30 LET $\mathrm{D}=$ RND

40 FOR G=1 TO 5
50 PRINT "DIRECTION (-90 TO 90) ?" 60 INPUT T1
70 PRINT "ELEVATION (O TO 90) ?" 80 INPUT B

90 LET D1=SIN(2* (B/180*3.1416))

How the program works

This selects a whole number between -90 and 90 for the direction.
This selects a number between 0 and 1 for the distance of the castle from you.

Get your guesses and puts them in A and B.

Uses your elevation angle to calculate the distance your missile went. (Answer will be between 0 and 1).
100 IF ABS $(T-T 1)<2$ AND ABS (D-D1) <. 05 THEN GOTO 220 -If your direction was within 2 degrees and your distance within 0.05 , then you have hit the castle. Program jumps to line 220 to tell you so.

110 PRINT "MISSILE LANDED ";
120 IF T1<T THEN PRINT "TO THE LEFT ";
130 IF T1>T THEN PRINT "TD THE RIGHT ";
Compares your direction angle with the number chosen in line 20 and prints an appropriate message.
140 IF ABS (D1-D) $>.05$ AND T1 \rangle T THEN PRINT "AND "; Decides A semi-colon at the end of a print statement tells the computer not to go to a new line for the next item to be printed. whether to print "and" by comparing the distance your missile travelled with the number chosen in line 30.

150 IF D-D1>. 05 THEN PRINT "NOT FAR ENOUGH"; Prints a message 160 IF D1-D $>.05$ THEN PRINT "TOO FAR"; if your shot was 170 PRINT too long or short.
180 NEXT G
190 PRINT "DISASTER - YOU FAILED"
200 PRINT "RETREAT IN DISGRACE"
210 STOP
220 PRINT "*KABOOOMMM*" 230 PRINT "YOU'VE DONE IT" 240 STOP
The above listing will work on a ZX81. For other computers, make the changes below
$\star \triangle 20$ LET T=INT (RND (1) *181) -90
20 LET T=INT (RND (O) * 181) -90
$\star \triangle$ - 30 LET D=RND (1)

- 30 LET D=RND (0)

Puzzle corner

Can you work out how to add the possibility of the robots seeing you and shooting at you before your five goes are up?

Battle at Traitor's Castle

定

The King is waging a fierce and bloody battle against his deadliest enemy - the Traitor Baron. You are one of the King's crack bowmen and at this very moment you are crouching behind the bushes outside the Baron's Castle, shooting at his men as they lift their heads above the battlements.

Your computer will print a row containing eight dots and an O . The number keys 1 to 9 correspond to the position of the 0 in the row. You have a short time to press the correct key, and hit the \mathbf{O}, before it disappears.

How many of the Baron's men can you hit?

How the program works

Sets your score to zero for start of game.
Beginning of loop which gives you 10 goes.
Sets up an empty string, RS.
Selects a number between 1 and 9 and puts it in T.
Loops round 9 times, adding a character to the string, RS, each time. The character is 0 for the position
corresponding to the number in T and a dot for all the others.
Prints the string.
Loops round a number of times to see if you are pressing a key. (End of loop at line 140)
Checks if you are pressing the right key. Jumps to 170 if so.
Prints if you pressed the wrong key or didn't press in time, then jumps to 190.

Increases your score by 1 . Sends computer back to line 30 for another go.

Prints your score when 10 goes are up.

Notice how the scoring works in this program (lines 20 and 180). You could try adding this to other programs.

Making the game faster or slower

You may find that the computer works too quickly or too slowly for you in this game. You can adjust this by changing the last number in line $110 . A$ lower number will make the game faster.

Puzzle corner

Can you change the program so that you get two kinds of target - either O (one of the Baron's Ordinary soldiers) which is worth 1 point, or S (one of his Special branch) which is worth 5 points?

You must act quickly． Robot invaders of all kinds are approaching．You have plenty of weapons， but for each type of Robot you must select exactly
the right one for it to have you must select exactly
the right one for it to have any effect．

Code symbols for each Robot will flash up on your screen．Quickly press the key with that symbol on it －beware，some need the shift key too－and see how many Robot invaders you can destroy．

How the program works

10 PRINT＂ROBOT INVADERS＂
20 LET H＝O
Sets score to zero for start．
30 FOR T＝1 TO 25 －Beginning of loop which gives you 25 goes．


```
*⿴囗@@O LET A=INT (RND*2O)
*■\triangle\bullet70 LET D=INT (RND*15) Ј Selects numbers for across and down positions on screen．
```

sk■A@80 LET P\$=CHR\$ (INT (RND*53+11)) Chooses a keyboard character.
4090 CLS
Clears screen
100 FOR Moves cursor down the
110 screen, one line at a time,
110 PRINT
120 NEXT J
130 PRINT TAB (A); P\$
\qquad
(which was chosen in line 70).
Moves cursor A spaces
across the screen and prints
名 -140 FOR I=1 TO 15 the character chosen in line
80 there.

Checks keyboard a number of times to see if you are pressing a key，checks if this is the right key and then jumps to the appropriate line to print hit or miss．
210 PRINT＂A HIT＂
sk■4e80 LET P\＄＝CHR\＄（INT（RND＊53＋11））Chooses a keyboard character．
4090 CLS
Moves cursor down the screen，one line at a time， until it reaches line number \mathbf{D} （which was chosen in line 70）．

Moves cursor A spaces across the screen and prints
高星 0140 FOR I＝1 TO 15

160 IF R $\$=$ P\＄THEN GOTO 210
170 IF R\＄＜＞＂＂THEN GOTO 190
180 NEXT I

220 LET $\mathrm{H}=\mathrm{H}+1$ Increases score by 1.
230 NEXT T－Goes back for another turn．
$\triangle 9240$ CLS
250 PRINT＂YOU SCORED＂；H；＂／25＂——Prints score after 25 goes．
260 STOP

Secret Weapon

If you could destroy the main Robot Spare Parts Store, which lies underground somewhere in the eastern wastes of the U.R.S., you could cripple the robot attack quite severely.

You have a new secret weapon, as yet unknown to the robots, which can cut silently through solid rock, vapourizing everything in its path. The Store is very cleverly concealed though. All you can do is aim your weapon blindly and hope you get somewhere near the target.

Your computer will ask you for a difficulty number (the smallest number allowed is 4) and then ask for your guesses for the \mathbf{X} and \mathbf{Y} coordinates of the target. (Enter these separately, pressing RETURN, NEWLINE or ENTER after each one.)

For a clue to the possible values of \mathbf{X} and \mathbf{Y}, look carefully at the program listing.

How the program works

410 CLS

```
"SECRET WEAPON"
30 PRINT "ENTER DIFFICULTY
4 0 ~ I N P U T ~ D ~
5 0 ~ I F ~ D < 4 ~ T H E N ~ G O T D ~ 3 0 ~
```

Gets a difficulty number from you，puts it in D and checks it is not less than 4.

```
* *Ae60 LET X=INT (RND*D+1)
```

* *Ae60 LET X=INT (RND*D+1)
\starEAO70 LET Y=INT (RND*D+1)
\starEAO70 LET Y=INT (RND*D+1)
80 FOR G=1 TO D+5

```
    80 FOR G=1 TO D+5
```



``` Selects numbers for \(X\) and \(Y\) ． Beginning of loop which gives you a number of goes depending on the difficulty
9 0 ~ P R I N T ~ " G U E S S E S ~ F O R ~ X ~ A N D ~ Y " ~
100 INPUT X1
110 INPUT Y1
                                -
Gets your guesses arid puts
them in XI and Y1.
```

120 LET $Z=\operatorname{SQR}((X-X 1) *(X-X 1)+(Y-Y 1) *(Y-Y 1))$－Works ont the distance between your shot and the target and puts the answerin \mathbf{Z} ．

SQR takes

 square roots．130 IF $Z=0$ THEN GOTD 200
140 IF $Z<=3$ THEN PRINT＂CLOSE＂
150 IF $Z>3$ THEN PRINT＂NOT EVEN CLDSE＂won．）
160 NEXT G

End of loop．Goes back for next tum．
170 PRINT＂THE ROBOTS HAVE SEEN＂Prints when you＇ve used all 180 PRINT＂YOU－AGGHHHHH．．．．．．＂yourgoes．
190 STOP
200 PRINT＂YOU DESTROYED IT IN
210 PRINT G；＂GOES＂

Prints if you were successful．
220 STOP

The above listing will work on a ZX81．For other computers，make the changes below．
－ 10 HOME
A 10 PRINT CHR\＄（147）
$\star \Delta 60$ LET $X=$ INT（RND（1）＊ $\mathrm{D}+1$ ）
－60 LET $\mathrm{X}=\mathrm{INT}$（RND（O）事 $\mathrm{D}+1$ ）
＊ 4070 LET $Y=I N T(R N D(1)$ 曹 $D+1)$
固70 LET $\mathrm{Y}=\mathrm{INT}$（RND（O）＊ $\mathrm{D}+1$ ）

Puzzle corner

Can you work out how to add the following scoring system？
 Score l point for each time you are close．
 Score 10 points for a win．

Escape!

The Robots have caught you, taken your weapons and locked you up. Suddenly you remember you still have your sonar wristwatch, which can be tuned to produce sounds of any frequency. If you can only find the resonant frequency of your Robot guards, they should vibrate so much they fall apart.
You must be careful not to use frequencies that are too low or the building will vibrate and collapse on top of you. If you go too high, you will get sucha terrible headache you will have to give up.

Can you escape the horrors of the Robot prison? (Look carefully at the program for a clue to the range of frequencies to try.)

Pirate Dogfight

It's you against the Sky Pirate. He moves ahead, you accelerate-He drops behind, you slow down. You must try to get level with him and then you can fire, hoping that he won't be able to fire and hit you first.

Use the letter keys A to accelerate, D to decelerate and F to fire. Your computer will tell you your speed and position relative to the pirate. You will need to be ready to press the appropriate keys as soon as you press RUN. Keep pressing A and D until you get level and thenfire.

太 ${ }^{[140} 40$ LET $\mathrm{S}=-\mathrm{INT}$ (RND*3+1)

How the program works

Chooses a number between -5 and +5 for your speed relative to pirate and puts it in V.

Chooses a number for your distance from the pirate and puts it in S. This is negative at the start, which means you are behind him.

Checks if the distance between you is more than 20. If so, computer jumps to 230 to say you've lost sight of him.

Checks the values of S and V and prints your position and speed in relation to the pirate.

Looks to see if you are pressing a key and, if so, which one. If it is A, your speed is increased by 1.IfD, your speed is decreased by 1 . If you are pressing F and $\mathrm{S}=0$ (i.e. you're level) then it jumps to 250. (If S is not 0 when you press F then nothing happens.)

50 IF ABS $(S)>20$ THEN GOTO $230-$
60 CLS
70 PRINT "YOU ARE ";
80 IF $5<0$ THEN PRINT "BEHIND"
90 IF $5>0$ THEN PRINT "AHEAD"
100 IF $\mathrm{S}=0$ THEN PRINT "LEVEL"
110 PRINT "YOU ARE GOING ";
120 IF $V>0$ THEN PRINT "FASTER"
130 IF $V<0$ THEN PRINT "SLOWER"
140 IF $V=0$ THEN PRINT "SAME"
\rightarrow
$\star \triangle 150$ LET I $\$=$ INKEY $\$$
160 IF $I \$=$ " A " THEN LET $V=V+1$
170 IF $I \$=$ " D " THEN LET $V=V-1$
180 IF I串="F" AND S=0 THEN GOTD 250

Supersonic Bomber

You are on a lone supersonic bombing mission over the U.R.S. Your computer shows graphs of Robot population based on infrared photographs relayed to it by satellite. You only have time to attack one target in five, so you must quickly select the one with the highest population of Robots and release one of your "Corrodarobe" bombs on it. (These contain a substance so corrosive it can dissolve a Robot's body in seconds.)

To release a bomb, press the number key which corresponds to the number next to the graph of highest Robot population. If there are two the same, choose the one with the lowest number.

Will you be a hero when you return to base?
$\triangle 10$ CLS
20 PRINT "SUPERSONIC BOMBER"

50 FOR G=10 TO 1 STEP $-1=$

60 LET $M=1$

70 FOR I=1 TO 5
■A@日O LET B(I)=INT (RND $10+1$)
90 IF $\mathrm{B}(\mathrm{I})>\mathrm{B}(\mathrm{M})$ THEN LET $\mathrm{M}=\mathrm{I}$ 100 NEXT I
$\triangle 110$ CLS
120 FOR I=1 TO 5
130 PRINT I;
140 FOR $\mathrm{J}=1$ TO $\mathrm{B}(\mathrm{I})$ 150 PRINT "**";
160 NEXT J
170 PRINT 180 NEXT I

* 19190 FOR I=1 TO G*3
$\star \overrightarrow{6} 200$ LET I $\$=$ INKEY $\$$
210 IF I\$<>"" THEN GOTO 270 220 NEXT I
230 PRINT "TOO LATE" $]$
*■AO240 FOR J=1 TO 10
250 NEXT J
260 GOTO 280
270 IF VAL ($\mathrm{I} \$$) $=\mathrm{M}$ THEN LET $\mathrm{S}=\mathrm{S}+1$
280 NEXT G
290 PRINT "YOU HIT ";S;" OUT OF 10 "
300 PRINT "HIGH DENSITY TARGETS"
310 IF $\mathrm{S}=10$ THEN PRINT "YOU'RE A HERO"
320 IF S<10 THEN PRINT "TOUGH - YOU FAILED"
The above listing will work, on a ZX81. For other computers, make the changes below.

```
        010,110 HOME
```

 010,110 HOME
 \triangle10,110 PRINT CHR$(147)
 \triangle10,110 PRINT CHR$(147)
 * APBO LET B (I)=INT (RND (1)*10+1)
* APBO LET B (I)=INT (RND (1)*10+1)
80 LET B(I)=INT (RND (0)*10+1)
80 LET B(I)=INT (RND (0)*10+1)
* \#\triangleO 190 FOR I=1 TO G*30

```
* #\triangleO 190 FOR I=1 TO G*30
```

 195 I\$=" "
 *200 I \(\$=I N K E Y \$(1)\)
 \(\triangle 200\) GET I\$
 太 $\triangle 240$ FOR $J=1$ TO 400

Changing the speed of the game

To give yourself more chance of

 pressing a key each time, change the last number in line 190 to a higher one.As your sldill improves, keep lowering the number in line 190. How low can you go and still win?

How the program works

This sets up B as an "array variable". It can hold five different values at a time, identifying them as $\mathrm{B}(1), \mathrm{B}(2)$, $B(3), B(4)$ and $B(5)$.
Sets opening score at zero.
Start of loop for 10 goes. Done backwards in this game (i.e. G=10 for first go, 9 for the second and so on). This allows the delay loop in line 190 to give you more time for the earlier goes.
Sets number of highest population graph at 1 to start with.
Chooses 5 numbers and puts them in the array $B(1)$ to $B(5)$. Checks which is biggest and changes M to correspond with it.

Prints the 5 numbers on the screen in the form of rows of stars.

Checks if you are pressing a key and goes to 270 if you are.

If you didn't press in time, prints TOO LATE and goes back for next go.
Checks if the key you pressed was correct and, if so, increases your score by 1.
-Goes back for another go.
200 IF PEEK $(-16384)>127$ THEN GET I $\$$

Puzzle corner

Can you work out how to make the computer give you more than 5 targets to choose from each time?

Iceberg

Your hull is badly damaged and you've no weapons to speak of. As you limp slowly home through treacherous iceberg-strewn waters, you become aware that an enemy ship is tailing you. Strangely it can detect you but not the icebergs, so your best chance is to lure it into hitting one.

Your computer will print a grid showing the position of your ship (\mathbf{Y}), the enemy (\mathbf{Z}) and the icebergs (*). You can move one space North, South, East or West each go. The enemy moves towards you by the most direct route (it can move diagonally too). If you move into any of the 8 positions surrounding the enemy, you will be captured, and if you hit an iceberg you will sink.

Can you escape?

How the program works

10 PRINT "ICEBERG"
$20 \operatorname{DIM} \operatorname{B}(8,8)$ \qquad This sets up the grid. B is an "array" with the DIMensions 8 by 8 .
tal 30 LET $\mathrm{N}=\mathrm{INT}$ (RND $\%$ 8+4)
N is the number of icebergs. It varies from 4 to 11 depending on the value of RND.
23 on $\mathbf{~ X X 8 1}$ and 42 on the other computers is the code for *. Computer loops round N times putting * into random positions in the grid.

- 1970 LET $S X=$ INT (RND $\% 8+1$) * 4 - 80 LET SY=INT (RND*B+1)	
90 I	IF $\mathrm{B}(\mathrm{SX}, \mathrm{SY})<>0$ THEN
$1{ }^{1} 100$	LET $\mathrm{B}(\mathrm{SX}, \mathrm{SY})=63$

This puts the enemy ship on the grid for the start of the game. 63 (ZX81) and 90 (others) are the codes for Z. Checks the position has not already been given to an iceberg and finds another if it has.

These lines do the same as above to put you on the grid. (62 and 89 are the codes for Y.)

Prints out grid with current positions of ships and icebergs.

S 成 140 LET $\mathrm{B}(\mathrm{YX}, \mathrm{YY})=62$
170 FOR $X=1$ TO 8
180 IF $B(X, Y)=0$ THEN GOTO 210
190 PRINT CHR $\$(B(X, Y))$;
200 GOTO 220
210 PRINT " "
220 PRINT " ";
230 NEXT X
240 PRINT
250 NEXT Y

The Wizard's Wall

The wall the Wizard built to surround his secret stronghold is no ordinary wall. The stones in it are people, petrified by the Wizard's angry stare, and, what's more, it can move. If you can break a hole through it with your trusty catapults which fling gigantic boulders, you will destroy the Wizard's magic powers and turn the stones back into people again. There are problems though - the Wizard is working on a spell which stops missilesin mid-air and sends them back where they came from. Sometimes he can make it work. . .

If you don't succeed, you will become just another stone in the Wizard's Wall!!!

4010 CLS
20 PRINT "WIZARD'S WALL"
30 PRINT
40 PRINT "DO YOU WANT ANY HELP?"
50 INPUT I $\$$
*
70 PRINT "DIFFICULTY?"
80 PRINT " $5=E A S Y$, $1=$ DIFFICULT $)$ "
90 INPUT Q
100 DIM W $(8,8)$
110 DIM E(8)
120 FOR $Y=1$ TO 8
130 FOR $X=1$ TO 4
\star *AO140 LET $W(X, Y)=20$
150 NEXT X
160 NEXT Y
170 LET $Z=0$
180 FOR C=1 TO 3
190 LET D=INT (RND*80+21)
200 GOSUB 430
210 IF $Z=1$ THEN GOTO 1150
220 PRINT "YOU ARE ";D;" YARDS AWAY"
*■4.230 LET W=INT (RND*41) - 20
240 IF $W=0$ THEN PRINT "NO WIND"
250 IF W<O THEN PRINT "WIND TO RIGHT"
260 IF W>0 THEN PRINT "WIND TO LEFT":
270 PRINT "GIVE ELEVATION (1-90)"
280 INPUT A
290 PRINT "GIVE SPEED"

```
    300 INPUT V
    310 LET A=A/180*3.1416
    320 LET H=TAN (A)* (D-W) - (5* (D-W)^2)/(V*COS (A))^2
    S3O LET H=INT (H/Q)
    340 IF H>O AND H<9 THEN GOSUB 540
    350 IF H<1 THEN PRINT "SHDT WAS TDD NEAR"
    360 IF H>8 THEN PRINT "SHOT WAS TOD FAR"
*■\triangleOS70 IF RND> . 2 THEN GDTD 200
    380 PRINT "THE WALL HAS MOVED..."
    390 NEXT C
    400 FRINT "YOU HAVE BEEN TURNED"
    410 PRINT "INTD STDNE"
    4 2 0 ~ S T D P ~
\star■AO430 FOR I=1 TO 30
    440 NEXT I
    \triangle450 CLS
        4 6 0 ~ P R I N T
        470 FOR Y=8 TO 1 STEP -1
        480 FOR X=1 TO 8
*目4490 PRINT CHR事(W(X,Y)):
    5 0 0 ~ N E X T ~ X ~
    5 1 0 ~ P R I N T
    5 2 0 ~ N E X T ~ Y ~
    530 RETURN
    540 GOSUB 650
    550 LET W (E (H)-1,H)=0
    560 IF V*CDS (A)>50 THEN LET W (E (H)-2,H)=0
*■A570 IF RND> . 5 AND H<>1 THEN LET W (E (1), 1)=29
\star■AO580 IF RND> 5 AND H}>5\mathrm{ AND H<8 THEN LET
    W (E (H+1)-1,H+1)=0
    5 9 0 ~ I F ~ H > 1 ~ T H E N ~ G O T O ~ 6 3 0
    600 FDR Y=2 TD 8
\star■AO610 IF RND<.5 THEN LET W(E (Y) - 1, Y) =0
    620 NEXT Y
    630 GOSUB 650
    640 RETURN
    650 FDR Y=1 TD 8
    660 LET X=1
    670 IF W (X,Y)=0 DR X=8 THEN GOTO }70
    680 LET X=X+1
    6 9 0 ~ G O T D ~ 6 7 0 ~
    700 LET E (Y) =X
    710 IF }X=1\mathrm{ THEN LET }Z=
```

The Wizard's Wall continued
720 NEXT Y
730 RETURN
740 PRINT "YOU ARE ATTACKING THE" 750 PRINT "LAST STRONGHOLD OF THE"
760 PRINT "NOTORIOUS WIZARD, WHO"
770 PRINT "IS HIDDEN BEHIND AN"
780 PRINT "ENDLESS STONE WALL,"
790 PRINT "EACH STONE BEING ONE"
800 PRINT "OF HIS FORMER VICTIMS."
810 PRINT "ONLY YOU CAN ATTACK,"
820 PRINT "AND FREE THEM FROM"
830 FRINT "HIS MAGIC."
840 PRINT "YOU MUST DESTROY THE"
850 PRINT "WALL USING CATAPULTS,"
860 PRINT "BUT BEWARE, THE WIZARD"
870 PRINT "HAS THE POWER TO MDVE"
880 PRINT "THE WALL BACK AND"
890 PRINT "FORTH, AND OCCASIONALLY,"
900 FRINT "TO DEFLECT YOUR SHOTS"
910 PRINT "BACK AT YOU."
920 GOSUB 1110
930 PRINT "AFTER EACH SHOT, YOU ARE"
940 PRINT "SHOWN A CROSS-SECTION"
950 PRINT "OF THE WALL, SHOWING"
960 PRINT "HOW MUCH DAMAGE THERE"
970 PRINT "IS."
980 PRINT "NOTE THERE ARE CERTAIN" 990 PRINT "KEY STONES THAT PRODUCE" 1000 FRINT "LOTS OF DAMAGE, AND" 1010 PRINT "ALSO, THE FASTER THE" 1020 PRINT "BOULDER IS MOVING" 1030 PRINT "HORIZONTALLY, THE MORE" 1040 FRINT "DAMAGE IT WILL CAUSE."
1050 PRINT "CAN YOU DEFEAT THE"
1060 PRINT "WIZARD IN TIME TO SAVE"
1070 PRINT "THE THOUSANDS OF TRAPPED"
1080 PRINT "SOULS......."
1090 GOSUB 1110

1100 RETURN
1110 PRINT "PRESS A KEY ":
$\star \Delta 01120$ IF INKEY\$="" THEN GOTO 1120
401130 CLS
1140 RETURN
1150 PRINT "YOU MANAGED TO BREAK"
1160 PRINT "A HOLE IN THE WIZARD'S"
1170 PRINT "WALL - YOU HAVE BEATEN"
1180 PRINT "HIS MAGIC POWERS, AND"
1190 PRINT "FREED HIS VICTIMS."
1200 STOF
The above listing will work on a ZX81. For other computers, make the changes below.

■all RND to RND (O)
$\star \Delta$ all RND to RND (1)
-10,450, 1130 HDME
$\triangle 10,450,1130$ PRINT CHR事(147);

\star ■A•140 LET $W(X, Y)=29$

- 40430 FOR I=1 TO 200
* 430 FOR I=1 TO 1000
* $■ 490$ PRINT CHRक $(W(X, Y)+32)$;
$\star 1120$ I $\$=G E T \$$
-1120 GET I $\$$
$\triangle 1120$ GET I $\$=$ IF I $\$="$ " THEN GOTO 1120

Changes you can make to the game
You can make the wall thicker by changing the following lines:
Line 100: change the first number to a higher one, say, 10.
Line 130: subtract 4 from the number you used in line 100 and put the answer at the end of line 120. (i.e. in this case use 6.)
Line 480: change the last number to the number you used in line 100 (10 again in this case).
If you make the wall much thicker, you will probably need more time. Change the last number in line 180 to a higher number to do this.

Missile!

This game is different from the others in this book because it uses graphics. As the computers vary so much in the way their graphics work, there is a separate rrogram for each one. Read the instructions on this page for how to play the game and then look through the pages that follow for the version for your computer.

How to play Missile!

You have three missile bases, each capable of launching one missile. When you see a plane approaching, you must judge its height and speed and fire your missiles at it one by one.

Your missiles are launched by pressing any key. The first time you press launches the left-hand one, second time the middle one and third time the right-hand one.

See how many enemy planes you can shoot down.

Missile!: TRS-80 version

```
10 CLS 320 RETURN
20 DIM Y(3),F(3)
30 N=1
40 PS=INT (RND (O)*S+1)
50 P=INT (RND (0)*36+5)
60 GOSUB 400
70 FOR I=FS TO 100 STEF PS
80 GOSUB 300
90 F$=INKEY$
100 IF F$="" OR N>S THEN 130
110 F(N)=1
120 N=N+1
130 FOR J=1 TD 3
140 RESET (32*J,46-Y (J))
150 IF F (J)=0 DR Y (J)>45 THEN 190
160 Y(J)=Y(J)+1
170 IF POINT (32*J,46-Y(J)) THEN 230
180 5ET (32*J,46-Y(J))
190 NEXT
200 NEXT
210 FRINT EO,"MISSED"
220 END
230 PRINT [O,"HIT!!!"
240 END
300 RESET (I-PS,P) : RESET (I-PS+1,P)
310 SET (I,P) : SET (I+1,P)
```

Missile!: BBC version

```
10 MODE 5
20 VDU 23, 224, 224, 160, 144, 144, 143, 128, 128, 255
30 UDU 23, 225, 0, 0, 0, 0, 240, 12, 2, 255
40 VDU 23, 226, 16,56,84, 16, 16, 16,0,0
50 UDU 23,227,0,0,0,8,8,8,8.60
6 0 ~ D I M ~ Y ( उ ) , F ( 3 )
70 N=1:MS=16
80 PS=RND (20)+10
90 P=RND (500)+400
100 PROCDISPLAY
110 FOR I=PS TD 1100 STEP PS
120 PROCPLANE (I-PS,P,O) : PROCPLANE (I,P,3)
130 F$=INKEY$(O)
140 IF F$="" OR N>S THEN 170
150 F(N)=TRUE
160 N=N+1
170 FOR J=1 TO 3
180 IF NOT F(J) THEN 240
190 PROCMISSILE (J,O)
200 Y (J)=Y (J) +MS
210 IF Y(J)<1024 THEN PRDCMISSILE (J,3)
220 X=J*320-I : Y=Y (J) +32-P
230 IF }X<128\mathrm{ AND }X>-40 AND Y>-32 AND Y<2 THEN 280
240 NEXT
2 5 0 ~ N E X T ~
260 CLS = PRINT "MISSED!!!!"
270 END
280 PROCPLANE (I, P, 1) : SOUND 0, -15,5,20
290 END
300 DEF PROCPLANE (X,Y,C)
310 GCOL O, C
320 MDVE X,Y
330 VDU 5, 224,225,4
340 ENDPROC
350 DEF PROCMISSILE (N,C)
360 GCDL 0, C
370 MDVE 320*N, 32+Y (N)
380 UDU 5,226,4
390 ENDPROC
400 DEF PROCDISPLAY
410 FOR I=1 TO 3
420 MOVE I*320,32
430. VDU 5, 227, 8, 226,4
4 4 0 ~ N E X T
4 5 0 ~ E N D P R O C ~
```

Missile!: ZX Spectrum version
10 CLS
15 INVERSE 0
20 DIM y(3)
30 DIM $\mathrm{f}(3)$
40 LET $\mathrm{n}=1$
50 LET $\mathrm{ms}=8$
60 LET ps=INT (RND*6+5)
70 LET $p=I N T$ (RND*140+20)
80 GOSUR 400
90 FOR $i=p s$ T0 240 STEP ps
100 LET c=1 : LET $\mathrm{x}=\mathrm{i}-\mathrm{ps}$
110 GOSUB 300
120 LET $\mathrm{c}=0$: LET $\mathrm{x}=\mathrm{i}$
130 GOSUB 300
140 LET $f \$=$ INKEY $\$$
150 IF $f \$="$ " OR $n>3$ THEN GOTD 170
160 LET $f(n)=1$: LET $n=n+1$
170 FOR $j=1$ TB 3
180 LET $c=1$: GOSUB 350
190 IF $f(j)=0$ OR $y(j)>148$ THEN GOTD 240
200 LET $y(j)=y(j)+m s$
210 LET $c=0$: GOSUB 350
220 LET $x=j * 64-i=$ LET $y=p-y(j)$
230 IF $x>-1$ AND $x<12$ AND $y<10$ AND $y>-5$ THEN GOTD 280
240 NEXT j
250 NEXT i
260 PRINT AT 0, O; "Missed"
270 STOP
280 PRINT AT 0,O;"Hit!!!"
290 STOP
300 INVERSE C
310 PLOT x, p
320 DRAW 0,8 : DRAW $3,-6$
330 DRAW 8,0 : DRAW 2,-2
340 DRAW $-13,0$: RETURN
350 INVERSE c
360 PLOT $64 * j+4, Y(j)+4$
370 DRAW 0,6 : DRAW $-2,-2$
380 DRAW 2,2 : DRAW 2,-2
390 RETURN
400 FOR $a=65$ T0 66
410 FOR b=0 TD 7
420 READ c
430 POKE USR CHR ${ }^{(a)+b, ~ c ~}$
440 NEXT b
450 NEXT a

Missile! : VIC 20 version

```
10 PRINT CHR \({ }^{(147)}\) )CHR \(\$(5)\);
20 POKE 36879,8
60 DIM Y(3),F(3)
\(70 \mathrm{~N}=1\) : \(\mathrm{MS}=2\)
\(90 \mathrm{P}=\mathrm{INT}(\mathrm{RND}(1) * 9+2) * 2\)
110 FOR I=1 TO 21 STEP RND (1)/2+. 5
120 Gosub 300
130 GET F\$
140 IF \(F \$="\) " OR N>3 THEN 170
\(150 \quad \mathrm{~F}(\mathrm{~N})=-1\)
\(160 \mathrm{~N}=\mathrm{N}+1\)
```

```
170 FDR J=1 TO 3
180 IF F(J)=0 THEN 220
190 POKE 8164+J*S-Y(J)*22,32
200 IF Y (J)=22 THEN 240.
210 Y(J)=Y (J)+1
220 POKE 8164+J*5-Y(J)*22,30
230 IF ABS (I-J*5)<=1 AND P=Y (J) THEN 280
240 NEXT
250 NEXT
260 PRINT CHR$(147);"MISSED!!!!"
270 END
280 PRINT CHR$(147);"HIT!!!!"
282 POKE 36877,220 : POKE 36878,15
284 FOR K=1 TO 500 : NEXT
286 POKE 36877,0 : POKE 36878,0
290 END
300 POKE 8163+1-P*22,32
310 POKE 8164+I-P*22,121
320 RETURN
```

Special note for Spectrum users:
The convention used for showing graphics characters in a PRINT statement is as follows: The character $[$ means press the GRAPHICS key once. Then type the following letter keys (shifted for the ZX81). Press the GRAPHICS key again when $]$ is shown.

Missile!: Apple version

```
10 HDME
2 0 ~ H G R ~
30 HCOLOR=3
40 DIM Y(3),F(3)
50 N=1 : MS=5
60 FS=INT (RND (1)*6+4)
70 F=INT (RND (1) *135+11)
BO GOSUB 400
90 FOR I=FS TO 265 STEP PS
100 X=I-FS : Y=159-F : C=0 : GOSUB 300
110 X=I : C=3 : GOSUB 300
120 F$="" : IF PEEK (-16384) >127 THEN GET F$
130 IF F$="" OR N>S THEN 160
140 F (N)=1
150 N=N+1
160 FOR J=1 TO 3
170 C=0 : GOSUB 350
180 IF F (J)=0 OR Y (J)>145 THEN 230
190 Y (J) =Y (J) +MS
200 C=3 : GOSUB 350
210 X=J*70-I : Y=P-Y(J)
220 IF X>-1 AND X<15 AND Y>-9 AND Y<5 THEN 270
230 NEXT
2 4 0 ~ N E X T ~
250 VTAB 22 : PR'INT "MISSED"
260 END
270 VTAB 22 : FRINT "HIT!!!"
280 END
300 HCQLOR=C
310 HPLDT X,Y TD X,Y-8
320 HPLDT TO X+3,Y-2 : HPLOT TO X+12,Y-2
330 HPLDT TO X+14,Y : HPLOT TD X,Y
340 RETURN
350 HCOLOR=C
360 HPLOT 70%J,158-Y(J) TO 70*J,154-Y(J)
370 RETURN
400 FOR J=1 TO J
410 HPLOT 70*J-5,159 TO 70*J+5,159
4 2 0 ~ N E X T
4.30 RETURN
```

```
10 CLS
20 DIM Y(3)
30 DIM F(3)
40 LET N=1
50 LET P=INT (RND*19+2)*2
60 FOR I=1 TO 4B
70 PLOT I,P
80 PLDT I +1,P
70 UNPLDT I-1,P
100 LET B$=INKEY$
110 IF Bक="" OR N>S THEN GOTD 140
120 LET F(N)=1
130 LET N=N+1
140 FOR J=1 TO S
150 IF F(J)=0 THEN GOTD 190
160 UNPLDT J*16,Y(J)
170 IF Y (J)=42 THEN GOTO 210
180 LET Y (J)=Y (J)+1
190 FLOT J*16,Y(J)
2 0 0 ~ I F ~ P = Y ( J ) ~ A N D ~ ( J * 1 6 = I ~ O R ~ J * 1 6 = I + 1 )
    THEN GOTO 260
210 NEXT J
220 NEXT I
230 CLS
240 FRINT "MISSED"
250 STOP
260 CLS
270 PFINT "HIT"
280 STOP
```


Adding to the programs

Here are some ideas for additions you can make to the programs in this book or to your own programs. In most cases you won't be able to add these to a ZX81 with only 1 K as the games themselves fill almost all its memory space, but you should find there is plenty of room on the other computers.

Remember you will either have to restrict your additions to the spare line numbers in a program or renumber the program. If you decide to renumber, take care you change all the GOTO and GOSUB lines too.

Making the computer stop and wait for you

If your instructions are very long, you may want to insert this sub-routine which stops the program running at a particular point until you press a key. This way you can stop the instructions scrolling off the top of the screen before you have read them. Put a GOSUB line at the place you want the program to stop and then put this subroutine at the end.
ES

1000 PRINT "PRESS A KEY TO CONTINUE ";
©SX1010 IF INKEY $\$=$ "" THEN GOTO 1010
$\downarrow 1010$ I $\$=$ GET $\$$
Getting the computer to tell you how to play
You can adda section to any program to make the computer print instructions telling you what to do. The easiest way to do
 this is to add some lines, such as those below, at the beginning of the program and then put a sub-routine at the end.

10 PRINT "TITLE OF GAME"
11 PRINT "DO YOU WANT TO"
12 PRINT "KNOW HOW TO PLAY?"
15 INPUT I\$
S ZX 17 IF $\mathrm{I} \$(1)=$ " $\mathrm{Y} "$ THEN GOSUB 1000 \star 回AO17 IF LEFT $\$(1 \$, 1)=" Y$ " THEN GOSUB 1000
main program goes here
1000 PRINT "WHAT YOU HAVE TO" 1010 PRINT "DO IS.........." 1999 RETURN

You can add as many print statements as you like for the instructions, just remember to put a number and the
 one. Restrict the length of the part inside the quotation marks to the number of characters your computer can print on one line. Don't forget to put a RETURN line at the end or the program won't work.

You can make the computer ask you questions and react to your answers.
For instance, here is an addition which will make the computer refuse to play with you unless your name begins with J.
1 PRINT "WHAT IS YOUR NAME?"
2 INPUT I\$
3 IF I $\$(1)<>" J "$ THEN GOTO 1000
3 IF LEFT $\$(I \$, 1)<>" J "$ THEN GOTO 1000
4 PRINT "OK-YOU CAN PLAY."
5 PRINT "ARE YOU READY?"
6 INPUT J\$
7 IF J\$(1)<>"Y" THEN GOTO 5
7 IF LEFT $\$(J \$, 1)<>" Y "$ THEN GOTO 5
main program here

```
1000 PRINT "SORRY THIS GAME IS"
1010 PRINT "ONLY FOR PEOPLE"
1020 PRINT "WHOSE NAMES BEGIN"
1030 PRINT "WITH J"
```

Here is another one where the computer dares you to be brave enough to play.

10 PRINT "VERY SCAREY GAME"
12 PRINT "ARE YOU BRAVE ENOUGH"
14 PRINT "TO TACKLE THE GREEN"
15 PRINT "HAIRY MONSTER?" 16 INPUT I $\$$
S $\mathrm{ZX17}$ IF $\mathrm{I} \$(1)=$ "Y" THEN GOTO 20

* 18 PRINT "COWARD"
19 STOP
You could combine this with the instruction sub-routine by taking lines 11 to 17 from the instructions section on this page and putting them at lines 20 to 26 of this program. You can then start the main program at line 30 and add the instruction sub-routine at the end.
cases you can add a single line to your program at the place you want the sound. In others, you need several lines and it is best to put these in as a sub-routine.
As an example, here is the sound of a shot for the BBC. You can experiment with where to put it in the program, but you must give it a line number to make it work:
SOUND $0,-15,5,10$
At the back of the VIC manual you will find some useful sub-routines for sounds such as "laser beam", "explosion" and "red alert". Put a GOSUB line where you want the sound to appear, number the sub-routine and add a RETURN at the end of it.

Would you like another go?

Instead of typing RUN each time you play a game, you can make the computer ask you if you'd like another go. Put these lines at the end of the program, just before the last STOP statement.

1000 PRINT "DO YOU WANT ANOTHER GO?"
1010 INPUT I $\$$
$S \mathrm{Z} \times 1020$ IF I ${ }^{(1)}(1)=$ "Y" THEN RUN
太 1030 PRINT "OK THEN - BYE" 1040 STOP

Change line numbers according to your program.

Adding sound effects

The BBC, VIC 20, ZX Spectrum and some Apples are able to produce sounds and you can add lines to your programs to make them do so at appropriate places. You could add an explosion for instance, or a little tune which plays if you win. All the computers need different instructions to make sounds though, so you will have to look at your manual. In some

Special note for BBC and Spectrum users

If you have a BBC or a ZX Spectrum you may find that some of the games in this book run too fast for you. You will find a box next to these games containing instructions for changing the speed. Remember, to slow the game up you always need to use a higher number. Later models of the BBC may run up to twice as fast as the earlier models, and this could make the games appear impossible on the first run. Be prepared to make big changes to the speed number to correct this.

Writing your own programs

As you work through the games in the book, you will probably find yourself making more and more changes to them and eventually wanting to write new games of your own. On these two pages you will find some hints on how to set about doing this.

Before you start, it is a good idea to stop and think about what your computer can and cannot do.

*It can store information

*It can do calculations.

*It can make decisions by comparing items of information in various ways.

*It can tell you the results of its calculations and decisions and also what is stored in its memory.

*It can ask you for information.

*It can select numbers at random by using RND.

*It cannot do anything unless you tell it to.

*Provided you use its language correctly, it can do only exactly what you tell it, even if it is silly.

Remember, when you are trying to work out a game, notto include anything which your computer won't be able to do.

Planning a game

Before you can tell the computer how to play your game, you must know exactly how to play it and what the rules are yourself. The computer will need a series of simple logical instructions, so work out your game in your head or on paper first and then break it down into simple steps.

Next write a plan (in English-don't try to use BASIC yet) of all the stages of the game in order.

Here is a plan for a simple shooting game, such as firing cannon balls at a pirate ship or shooting laser beams at an alien invader, to give you an idea.
8\% 万ुठ उत क के
PLAN

1) PRINT TITLEAND
INSTRUCTIONS
2) CHOOSE A TARGET
FOR THIS GAME
3) BEGIN A LOOP TO
GIVE THE PLAYER
N GOES
4) GET A SHOT FROM THE PLAYER
5) CHECK IF SHOT WAS ON TARGET
6) PRINT MESSAGE DEPENDING ON ACCURACY OF SHOT

7) $G O B A C K$ FOR ANOTHER GO IF SHOT WAS UNSUCCESSFUL

Writing the program

The next stage is to convert your plan into BASIC. Each step in your plan may need several lines in BASIC. Don't forget to leave gaps when numbering your program lines so you can go back and add extra ones if you need to.

Do a first draft of the program on paper first and then start testing on the computer. Your computer will spot errors much more quickly than you will see them yourself and may give you a clue as to what is wrong. Remember that debugging programs is a long, tedious process even for expert programmers, so don't expect to get yours right first time.

Once you have got the core of the program working, you can add to it. Scoring, extra comments, more targets etc. can all be incorporated later. You could add sections from the programs in this book to your games.

Don't expect to be able to write exciting and original games straight away. Keep your ideas very simple and be prepared to,adapt them as you go along. You may find you have included something in your game which is easy for humans to do but very difficult for a computer. As you get more experienced you will begin to know instinctively what your computer can do and find it easier to write programs for it.

Summary of BASIC

This section lists some common BASIC words and describes what they make the computer do and how they are used. Most of them have been used in the programs in this book, so you can check back through the book to see how they work in a game. Not all the words can be used on all the computers mentioned in this book. The conversion chart on page 46 shows what you can use instead.

LET tells the computer to label a section of its memory and put a particular value in it e.g. LET $A=6$ means label a section of memory " A " and put the value 6 in it. "A" is called a "variable" and putting something in it is called "assigning a value toa variable".

Some variable labels are followed by a dollar sign e.g. A\$. This means they are for "strings", which can contain any number of characters, including letters, numbers and symbols.

PRINT tells the computer to display things on the screen and you can use it in several ways:

A message enclosed in quotation marks with PRINT in front of it will be displayed on the screen exactly as you typed it. The section inside quotes does not have to be in BASIC, it can be anything you like.

PRINT followed by a variable label e.g. PRINT A or PRINT A\$ tells the computer to display the contents of that variable on the screen.

PRINT can also do calculations and then display the results e.g. PRINT 6* 4 will make the computer display 24.

You can use PRINT by itself to leave an empty line.

RND tells the computer to choose a number at random. Different computers use different forms of RND and you can see what these are in the conversion chart on page 46. On Sinclair computers RND by itself produces a number between 0 and .99999999. You can vary the limits of the number it chooses by multiplying RND and adding to it. E.g. RND*20 produces a number between 0 and 19.99999999, while RND*20+1 produces a number between 1 and 20.99999999.

See INT for how to produce only whole numbers.
See CHR\$ for how to produce letters and other keyboard characters at random.

INT is short for integer, which means whole number. For positive numbers, it tells the computer to ignore everything to the right of the decimal point. E.g. INT (20.999) is 20 . For negative numbers, it ignores everything to the right of the decimal point and "increases" the number to the left of it by one e.g. INT(-3.6) is -4 .

INT is often used with RND, like this: INT(RND* $20+1$) which tells the computer you want it to choose a whole number between 1 and 20 .

CHR\$ converts numbers into letters. Apart from the ZX81, all the computers in this book use the ASCII*set of keyboard characters in which each character corresponds to a certain number. E.g. letter A has the code number 65 and PRINT CHR\$(65) will display an A on the screen.

You can use CHR\$ with INT and RND to make the computer select random letters, like this:

CHR\$(INT(RND*26+65))
This line will produce random letters on a ZX Spectrum (see conversion chart for other computers).

FOR is used to start a "loop" which will make the computer repeat part of a program a certain number of times. It must be followed by a variable (such as G to stand for the number of goes allowed in a game), and the variable must be given start and end values (such as 1 TO 10.)

The end of the loop is marked by a NEXT line (NEXT G in this example) which increases the value of the variable by leach time and then sends the computer back to the FOR line again. When the variable reaches its end value, the computer ignores the NEXT line and carries on to the line which follows it. Every FOR must have a NEXT or you will get a bug.

INPUT labels a space in the computer's memory, prints a question mark and then waits for youto type something which it can put in this memory space. It will not carry on with the rest of the program until you press RETURN, ENTER or NEWLINE.

You can use number or string variables with INPUT, but if you use a number variable the computer will not accept letters from you.

INKEY\$ checks the keyboard to see if a key is being pressed and if so which one. It does not wait for you to press a key like INPUT does. It is usually used in a loop which makes the computer go round checking the keyboard lots of times. This is because computers work so quickly, you wouldn't have a chance of pressing a key in the time it takes the computer to do one check.

If you haven't pressed a key before the loop finishes, the computer carries on with a string containing nothing (called a "null" string). NB Apple and VIC do not use INKEY\$.

GET is used instead of INKEY\$ on VIC and Pet computers.

GOTO makes the computer jump up or down the program ignoring the lines in between. You must put the number of the line you want it to jump to after the GOTO instruction.

GOSUB tells the computer to leave the main program and go to a sub-routine. GOSUB must be folowed by the number of the first line of the subroutine. At the end of the sub-routine you must have a RETURN line. This sends the computer back to the main program to the line immediately following the GOSUB line. A GOSUB without a RETURN in a program will give a bug.

IF . . THEN tells the computer to decide if an expression is true or false, and do different things depending on the answer. It is used with the following signs, and also with AND or OR:
=the same as
$<$ less than
$>$ greater than
$<=$ less than or the same as
$>=$ greater than or the same as
$<>$ not the same as
If the computer decides an expression is true, it carries on to do the instruction which follows THEN. If it decides it is false, it ignores the rest of that line and goes on to the next one.

CLS is used to clear everything off the screen without removing or changing anything in the memory. It is useful for removing the listing from the screen at the beginning of a RUN or in games when you want the player to react to something seen for a limited amount of time. (NB Apple and VIC do not use CLS - see conversion chart).

HOME is used by Apple computers instead of CLS to clear the screen.

ABS ignores plus and minus signs in front of numbers and takes their "absolute" values. E.g.
 $A B S(-10)$ is 10 and $A B S(+10)$ is also 10.

VAL takes the numeric value of numbers written as strings. In effect, it tells the computer to ignore the dollar sign and treat the string as an ordinary number variable. E.g. if $I \$=$ " 60 " then VAL(I\$) is the number 60.

ASC converts a character into its ASCII code number e.g. ASC(" 3 ") gives 51. The expression in brackets must be a string e.g. ASC(A\$) or ASC("20").
NB ZX81 and ZX Spectrum do not use ASC, though the Spectrum does use the ASCII code.

CODE is used by ZX 81 and Spectrum in place of ASC. Like ASC it must always be followed by a string. Remember that the ZX81 uses different code
 numbers from the other computers.

TAB moves the cursor across the screen to a specified column number. It is usually used with PRINT to display something in the middle of the screen. The number of spaces you want the cursor moved is put in brackets after TAB. The maximum number you can use depends on the screen width of your computer.

SGN tells the computer to find out the sign of a number. It produces -1 for a negative number, 0 for zero and +1 for positive numbers. E.g. $\operatorname{SGN}(-30)$ is $-1, \operatorname{SGN}(7)$ is +1 and $\operatorname{SGN}(0)$ is 0 .

DIM tells the computer how much memory space will be needed for an "array" (a row or a grid). E.g. DIM X(6) tells the computer to set aside an area large enough to contain a row of 6 elements and labelled X. DIM A(8,8) means a memory space labelled A and big enough to take 8 elements across and 8 down is needed. The number of elements of data used in the program must correspond to the numbers in brackets after DIM or you will get a bug.

SQR takes square roots of numbers. E.g. SQR(16) gives the answer 4.

SIN calculates the sine of an angle. In a right-angled triangle the length of the side opposite an angle, divided by the length of the Hypoteneuse (the side opposite the right angle) is the sine of that angle. When you use SIN in a program, the angle youare using it with must be measured in radians, not degrees.

ATN is one of the trig. functions which computers can calculate (see also SIN above). It stands for arctangent and it is important to remember that it gives an answer in radians, not degrees. You will need to use a maths book to find out how this works if you do not already know about it.

STOP tells the computer not to go any further in a program. Computers other than the ZX81 can use END instead.

PEEK is a way of finding out what is in a specific area of the computer's memory. You need to use it with a number which specifies an "address" in the memory.
NB not used on BBC.
POKE is a special way of putting information in the computer's memory by using a memory "address'. NB not used on BBC.

ASCll chart

Code number	ASCII character	Code number	ASCII character
32	space	62	$>$
33	!	63	?
34	"	64	(a)
35	\#	65	A
36	\$	66	B
37	\%	67	C
38	\&	68	D
39	,	69	E
40	(70	F
41)	71	G
42	*	72	H
43	+	73	I
44	,	74	J
45	-	75	K
46	.	76	L
47	1	77	M
48	0	78	N
49	1.	79	0
50	2	80	P
51	3	81	Q
52	4	82	R
53	5	83	S
54	6	84	T
55	7	85	U
56	8	86	V
57	9	87	W
58	,	88	X
59	;	89	Y
60	<	90	Z
61	$=$		

2x81 codechart

Code number	$\begin{aligned} & \text { ZX81 } \\ & \text { character } \end{aligned}$	Code number	ZX81 character
11	"	41	D
12	£	42	E
13	\$	43	F
14	:	44	G
15	?	45	H
16	(46	I
17)	47	J
18	$>$	48	K
19	$<$	49	L
20	$=$	50	M
21	+	51	N
22	-	52	0
23	*	53	P
24	1	54	0
25	;	55	R
26	,	56	S
27	.	57	T
28	0	58	U
29	1	59	V
30	2	60	W
31	3	61	X
32	4	62	Y
33	5	63	Z
34	6		
35	7 .		
36	8		
37	9		
38	A		
39	B		
40	C		

Chart of screen sizes

	Max. number of characters aross (or number of columns)	Max. number of lines down (or number of rows)
VIC 20	22	23
TRS-80	64	16
BBC	$20 / 40 / 80$	$16 / 24 / 32$
ZX81	32	22
ZX Spectrum	32	22
Apple	40	25

Conversion chart

This quick reference chart shows some of the variations in the BASIC used by the machines in this book. It does not include instructions for graphics, sound or colour as these vary so enormously from machine to machine.
Note also that although most computers (except the BBC) use PEEK and POKE, they do not use the samesystem of memory addresses, so the numbers used with PEEK and POKE must be changed for each computer.

	BBC	VIC/Pet	Apple	TRS-80	ZX Spectrum	2X81
Select random number between 0 and 0.99999999	RND (1)	RND(1)	RND(1)	RND(0)	RND	RND
Select random number between 1 and N	RND(N)	$\mathrm{RND}(1){ }^{\star} \mathrm{N}+1$	$\mathrm{RND}(1){ }^{\star} \mathrm{N}+1$	RND(N)	RND*N+1	RND*N+1
Select random letter between \bar{A} and Z	CHR\$(RND (26)+64)	$\begin{array}{r} \text { CHR\$(INT(RND(1) } \\ * 26+65)) \end{array}$	$\begin{array}{r} \text { CHR\$(INT(RND(1) } \\ * 26+65)) \end{array}$	CHR\$(RND (26) + 64)	CHR\$(INT(RND*26+65))	CHR\$(INT(RND* $26+38$)
Clear screen	CLS	PRINT CHR\$(147)	HOME	CLS	CLS	CLS
Check keyboard to see if key being pressed	INKEY\$(N)	GET X\$	$\begin{aligned} & \mathrm{X} \$=" " \\ & \text { IF PEEK(-16384) } \\ & >127 \text { THEN GET X\$ } \end{aligned}$	INKEY\$	INKEY\$	INKEY\$
Convert characters into code numbers	ASC("X") (using ASCII code)	$\begin{aligned} & \text { ASC("X") } \\ & \text { (using ASCII code) } \end{aligned}$	$\begin{aligned} & \text { ASC("X") } \\ & \text { (using ASCII code) } \end{aligned}$	ASC("X") (using ASCII code)	$\begin{aligned} & \text { CODE("X") } \\ & \text { (using ASCII code) } \end{aligned}$	CODE("X") (using ZX81 code)
Move cursor up	PRINT CHR\$(11)	PRINT CHR\$(145)	CALL -998	PRINT CHR\$(27)	PRINT CHR\$(11)	PRINT CHR\$(112)
Move cursor down	PRINT CHR\$(10)	PRINT CHR\$(17)	PRINT CHR\$(10)	PRINT CHR\$(26)	PRINT CHR\$(10)	PRINT CHR\$(113)
Move cursor left	PRINT CHR\$(8)	PRINT CHR\$(157)	PRINT CHR\$(8)	PRINT CHR\$(24)	PRINT CHR\$(8)	PRINT CHR\$(114)
Move cursor right	PRINT CHR\$(9)	PRINT CHR\$(29)	PRINT CHR\$(21)	PRINT CHR\$(25)	PRINT CHR\$(9)	PRINT CHR\$(115)
Take 1st N characters of string	LEFT\$(A\$,N)	LEFT\$(A\$,N)	LEFTS(A\$,N)	LEFT\$(A\$,N)	$A \$(1 \mathrm{TON})$	$A \$(1$ TON)
Take last N characters of string	RIGHT\$(A\$,N)	RIGHT\$(A\$,N)	RIGHT\$(A\$,N)	RIGHT\$(A\$,N)	A\$(N TO)	A\$(N TO)
Take middle N characters of string	MID\$(A\$,N1,N2)	MID\$(A\$,N1,N2)	MID\$(A\$,N1,N2)	MID\$(A\$,N1,N2)	A\$(N1 TO N2)	A\$(N1 TO N2)

Answers

You may find that your answers to some of the puzzles are different to the ones given here. As long as they work on your computer then this doesn't really matter, but check to see if they are as neat and simple as the answers in the book.

Page 5
 Robot Missile

Line 90 tells the computer how many times to loop round and get a guess from you. So, for more chances of guessing the secret code letter, change the last number in line 90 to a higher one. For less chances, change it to a lower one.

Page 7
 The Vital Message

In this program, lines 150 and 160 area "delay" loop. They make the computer do nothing for a certain length of time before going on to the next instruction in the program which is to clear the message off the screen. To make the message stay on the screen longer, you need to make the computer loop round more times. You can do this by changing the last number in line 150 to a higher one.

Page 9 Shootout

To make it possible for the computer to miss too, add the following lines in addition to those in the 'Making the game harder" box.

```
155 IF RND<. }1\mathrm{ THEN GOTO 250
250 PRINT "HE SHOOTS BUT MISSES"
260 GOTO 90
```

Line 155 may need $\mathrm{RND}(1)$ or $\mathrm{RND}(0)$, depending on your computer.

Page 11
 Desert Tank Battle

Add the following lines to the program to add the possibility of the robots seeing you:

175 IF RND $<.05$ THEN GOTO 250
250 PRINT "THEY'VE SEEN YOU-AAGGGHHHH"
260 STOP
Change the RND in line 175 to the version your computer needs. You can change .05 to any number between 0 and 0.999 , but remember that the higher the number you put here the greater the chance of the robots seeing you.

Page 13
 Battle at Traitor's Castle

This is a difficult puzzle, so don't worry if you couldn't do it. Try out the answer anyway. Add these lines to get the two targets.

55 LET P=INT (RND+.5) *4+1
S ZXS7 LET P $\$=$ CHR $\$(P+51)$
70 IF L=T THEN LET R $\$=R \$+P \$$
180 LET $\mathrm{S}=\mathrm{S}+\mathrm{P}$

Page 15
Robot Invaders
You can get 100 points for U, V, W, X or Y and 10 points for the others by making these changes.

```
220 LET H=H+10
225 IF P$>"T" AND P$<"Z" THEN LET
    H=H+90
```

Page 17
Secret Weapon
puzzle by putting these extra lines into the program.

```
15 LET S=0
145 IF }\textrm{Z}<=3\mathrm{ THEN LET }\textrm{S}=\textrm{S}+
190 GOTO 217
215 LET S=S+10
217 PRINT "YOU SCORED ";S;" POINTS"
```


Page 19

Escape!
This is the simplest way to add three robots to the game, though it makes the game rather difficult to win.

```
22 FOR R=1 TO 3
25 PRINT "ROBOT ";R
300 NEXT R
310 STOP
```


Page 21
 Pirate Dogfight

To make your chance of hitting the pirate equal to his chance of hitting you, change the .7 in line 290 to. 5 .

Page 23
 Supersonic Bomber

To get more targets each time, change the 5 in lines 30,70 and 120 to a higher number. You must put the same number in all three lines.

Page 25 Iceberg

You can make the grid bigger by changing all the 8 s in lines $20,50,70$, $80,110,120,160,170,290$ and 310 to a bigger number. (Use the same number each time.)

To add more icebergs change the 4 in line 30 to a higher number.

Going further

Here is a list of books you should find useful if you want to find out more about computers or writing programs.

Usborne Guide to Computers by Brian Reffin Smith, Usborne
Understanding the Micro by Judy Tatchell and Bill Bennett, Usborne
Introduction to Computer Programming by Brian Reffin Smith, Usborne
Illustrating BASIC by Donald Alcock, Cambridge University Press
Fred Learns about Computers, Macdonald \& Evans
The BASIC Handbook by David
A. Lien, Compusoft Publishing

The Computer Book by Robin Bradbeer et al, BBC Publications

First published in 1982 by
Usborne Publishing Ltd, 20
Garrick Street, London WC2E 9BJ, England.
(C) 1982 Usborne Publishing Ltd The name Usborne and the device θ are Trade marks of Usborne Publishing Ltd.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the publisher.

[^0]
Usborne Computer Programs

Each of these colourful new books contains 14 simple games programs to play on a microcomputer.* Alongside the programs there are explanations of how they work and puzzles and suggestions for ways of changing them. Through playing these games even complete beginners will quickly begin to understand how a simple program works and be itching to write their own. There are tips and hints on writing programs and a summary of BASIC at the back of each book and also a chart which will help you convert programs in magazines and other books to work on your micro.
*The programs in these books are suitable for use on the following micros: ZX81, BBC, TRS-80, VIC 20, Pet, Apples which use Palsoft BASIC and ZX Spectrum.

Other Computer Titles

A colourful guide to microcomputers, how they work and what they can do, with lots of ideas for things you can do with a micro.

A step-by-step guide to programming in BASIC for absolute beginners. With lots of programs to run on any microcomputer.

A colourful look at how computers play Space Invaders, chess and other games, with lots of tips on how to beat the computer.

[^0]: Printed in Spain by ELEXPURU, S. A. L.-Bilbao

